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Gapless Excitation above a Domain Wall Ground State
in a Flat-Band Hubbard Model
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We construct a set of exact ground states with a localized ferromagnetic domain
wall and with an extended spiral structure in a deformed flat-band Hubbard
model in arbitrary dimensions. We show the uniqueness of the ground state for
the half-filled lowest band in a fixed magnetization subspace. The ground states
with these structures are degenerate with all-spin-up or all-spin-down states
under the open boundary condition. We present a spin one-point function in
terms of local electron number density, and find the domain wall structure in
our model. We show the existence of gapless excitations above a domain wall
ground state in dimensions higher than one. On the other hand, under the peri-
odic boundary condition, the ground state is the all-spin-up or all-spin-down
state. We show that the spin-wave excitation above the all-spin-up or -down
state has an energy gap because of the anisotropy.

KEY WORDS: ferromagnetic domain wall; spiral state; flat-band Hubbard
model; exact solution; quantum effect; spin-wave; gapless excitation.

1. INTRODUCTION

Domain structures are observed universally in many ferromagnetic sys-
tems. If a system has a translational symmetry, this symmetry is bro-
ken spontaneously by domains. In classical spin systems, universal prop-
erties of the domain wall have been studied extensively. For example in
the Ising model on the cubic lattice, Dobrushin proved that a horizontal
domain wall is stable against the thermal fluctuations at sufficiently low
temperatures.(1) This structure in the Ising model is also preserved under
quantum perturbations. Borgs, Chayes and Fröhlich proved that the hori-
zontal domain wall on the d-dimensional hyper cubic lattice is stable also
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against weak quantum perturbations at sufficiently low temperatures for
d � 3.(2) On the other hand, a diagonal domain wall structure is unsta-
ble in the Ising model, since some local operators can deform the diago-
nal domain wall state to many other ground states without loss of energy.
In the ferromagnetic XXZ model in dimensions higher than one, however,
no local operator can deform the diagonal domain wall ground state to
other ground states by the exchange interaction. This fact suggests that the
diagonal domain structures are stable at sufficiently low temperatures in
sufficiently high dimensions, even though there is no proof. Alcaraz, Sali-
nas and Wreszinski construct a set of ground state with diagonal domain
wall structure in the XXZ model with a critical boundary field in arbitrary
dimensions for an arbitrary spin.(3) Gottstein and Werner clarified the
structure of ground states in the one-dimensional XXZ model with an infi-
nite-volume.(4) Koma and Nachtergaele proved that there is an energy gap
above any ground states in the one-dimensional XXZ model.(5) They also
showed an interesting result that there exists a gapless excitation above the
domain wall ground state in the XXZ model in two dimensions.(6) Matsui
extended this theorem to the XXZ model in arbitrary dimensions higher
than one.(7) Bolina, Contucci, Nachtergaele and Starr gave more precise
bound for the gapless excitation above the diagonal domain wall ground
state in the XXZ model.(8) Bach and Macris evaluate a spin one-point
function in the domain wall state of the one-dimensional XXZ model by
a rigorous perturbation method.(9) Datta and Kennedy also discussed the
existence of a domain wall in one-dimensional XXZ models by another
rigorous perturbation method.(10) They show that the exchange interac-
tion destroys the domain wall in the antiferromagnetic model, while the
domain wall exists in the ferromagnetic model at zero temperature. The
role of the quantum effects should be studied more in many other models.

Recently, a deformed flat-band Hubbard model with an exact domain
wall ground state was proposed.(11,12) The purpose of this paper is to
study excitations above the domain wall ground state in this model and
clarify whether or not, this model has the same spectra as in the XXZ
model. The flat-band Hubbard model was proposed as a lattice electron
model with a ferromagnetic ground state. Some remarkable results for
ferromagnetic ground states have been obtained in this class of models.
Mielke and Tasaki have independently shown that the ground state gives
saturated ferromagnetism in a class of many-electron models on a lattice,
which are called flat-band Hubbard models.(13,14) Nishino, Goda and Ku-
sakabe extended their result to more general models.(15) Tasaki proved also
the stability of the saturated ferromagnetism against a perturbation which
bends the electron band.(16) Tanaka and Ueda have shown the stability
of the saturated ferromagnetism in a more complicated two-dimensional
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model in Mielke’s class.(17) Tasaki has studied the energy of the spin-wave
excitations in the flat-band Hubbard model.(18) He has shown that the
dispersion of the one-magnon excitation is non-singular in the flat-band
Hubbard model, contrary to the Nagaoka ferromagnetism. The flat-band
ferromagnetism is believed to be stable against a small perturbation or the
change of the electron number density.(19) Unlike the ferromagnetic quan-
tum spin model, we expect strong quantum effects in the ferromagnetic
ground state of the electrons on the lattice. The fermion statistics and fully
polarized spin configuration imply that this state is microscopically entan-
gled with respect to the electron site configuration. Therefore, the calcula-
tions of the ground state expectation value become more complicated than
those in the XXZ model in which the ground state can be written in a
product state.

Here, we deform a flat-band Hubbard model by a complex anisotropy
parameter q. The SU(2) spin rotation symmetry in the original flat-band
model is reduced to U(1) symmetry in our deformed model. First, we
study our model under an open boundary condition. The anisotropy |q| �=
1 leads to a localized domain wall with finite width. The domain structure
is characterized in terms of the local order parameter 〈S(3)x 〉, which repre-
sents the third component of the localized spin at site x. This local order
parameter takes the same sign within one domain. The domain wall center
is a set of sites x defined by zeros of the local order parameter 〈S(3)x 〉=0.
We show the uniqueness of the ground state with a fixed magnetization
in a half-filled electron number in the lowest energy band. We represent
〈S(3)x 〉 in terms of the local electron density 〈nx〉, and show the profile of
the ferromagnetic domain wall. We study the low energy excitations in this
model. We show that there exists a gapless excitation above the domain
wall ground state. This excited state is constructed by acting a local opera-
tor near the domain wall on the ground state. We discuss reliability of our
results in the infinite-volume limit, although we present our result with a
finite system size. This property of the domain wall ground state is similar
to the gapless excitation above the domain wall ground state in the XXZ
model as well. Next, we study the model under the periodic boundary
condition. In this case, either all-spin-up or all-spin-down state is allowed
as a ground state. We show that a spin-wave excitation above the all-spin-
up ground state has an energy gap because of the anisotropy. This prop-
erty is similar to the Ising gap in the ferromagnetic XXZ model.

This paper is organized as follows. In Section 2, we define a deformed
flat-band Hubbard model on a decorated d-dimensional integer lattice. In
Section 3, we construct a set of ground states and prove the uniqueness of
the ground state in a subspace with each fixed magnetization. The domain
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wall structure is shown in terms of the spin one-point function. We also
obtain a representation for the spin correlation function. In Section 4, we
show the existence of gapless excitation above the domain wall ground
state in a sufficiently large system size. An upper bound on the excitation
energy is given in Theorem 4.1 and Corollary 4.1. In Section 5, we con-
sider our model under the periodic boundary condition. We estimate an
energy gap of the spin-wave excitation above the all-spin-up ground state.
Finally, we summarize our results in Section 6.

2. DEFINITION OF THE MODEL

The Hubbard model is a model which represents a many-electron sys-
tem on an arbitrary lattice. In this section, we define a d-dimensional
deformed flat-band Hubbard model illustrating its physical meaning. Our
model is a generalization of the Tasaki model given in ref. 14.

2.1. Lattice

The lattice � on which our deformed Hubbard model is defined is
decomposed into two sublattices

�=�o∪�′. (1)

�o is d-dimensional integer lattice with linear size L, which is defined

�o :=
{
x= (x1, x2, . . . , xd)∈Z

d

∣∣∣∣|xj |� L−1
2

j =1,2, . . . , d
}
. (2)

�′ can be further decomposed to �j (j =1,2, . . . , d), i.e.

�′ =
d⋃
j=1

�j . (3)

�j is obtained as a half integer translation of �o to j th direction,

�j :=
{
x+ e(j)|x ∈�o

}
∪
{
x− e(j)|x ∈�o

}
, (4)

where e(j) is defined

e(j) := (0, . . . ,0, 1
2 ,0, . . . ,0).↑
j th

(5)
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We show the lattice in the two-dimensional case in Fig. 1 as an example.

2.2. Electron Operators and the Fock Space

The creation and annihilation operators for an electron are denoted
by c†

x,σ and cx,σ . They obey the standard anticommutation relations

{cx,σ , c†
y,τ }= δx,yδσ,τ , {cx,σ , cy,τ }=0={c†

x,σ , c
†
y,τ }, (6)

where {A,B}=AB+BA, for sites x, y∈� and spin coordinates σ, τ =↑,↓.
We define no-electron state �vac by

cx,σ�vac =0 (7)

for all x ∈� and σ =↑,↓. We construct a Fock space spanned by a basis

{(∏
x∈A

c
†
x,↑

)(∏
x∈B

c
†
x,↓

)
�vac

∣∣∣∣A,B⊂�
}
. (8)

We also define a number operator nx,σ by nx,σ =c†
x,σ cx,σ whose eigenvalue

represents a number of electrons at site x with spin σ . Note anticommu-
tation relations {c†

x,σ , c
†
x,σ } = 0 i.e. c†

x,σ c
†
x,σ = 0. This relation implies the

Fig. 1. Two-dimensional lattice (with L=3). The white circles are sites in �o and the black
dots are sites in �′. Electrons at a site can hop to another site if this site is connected to the
original site with a line or a curve.
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Pauli principle. We employ the open boundary condition, when we con-
sider domain wall ground states. This is realized by cx,σ = 0 if |xj |>L/2
for some j=1,2, . . . , d with x= (xl)dl=1. We employ the periodic boundary
condition, when we consider the spin-wave excitation above the all-spin-up
ground state.

2.3. Deformed Flat-Band Hubbard Model

Before we define the Hamiltonian, we introduce new operators ã†
x,σ

and dx,σ defined by

ã
†
x,σ =




−qp(σ)/4
d∑
j=1

c
†
x−e(j),σ +λc†

x,σ −q−p(σ)/4
d∑
j=1

c
†
x+e(j),σ if x ∈�o,

λ−1c
†
x,σ if x ∈�′,

(9)

and

dx,σ =
{
λ−1cx,σ if x ∈�o,
q−p(σ)/4cx−e(j),σ +λcx,σ +qp(σ)/4cx+e(j),σ if x ∈�j, (10)

where q is a complex parameter, λ is a positive parameter and p(σ) takes
+1 if σ =↑ and −1 if σ =↓. And we formally define ã†

x,σ =0 and dx,σ =0
if |xj |>L/2 for some j=1,2, . . . , d with x= (xl)dl=1. This definitions corre-
spond to the open boundary condition for the original electron operators.
Note that these ã†

x,σ and dx,σ satisfy the anticommutation relations,

{ã†
x,σ , dy,τ }= δx,yδσ,τ , {ã†

x,σ , ãy,τ }=0={dx,σ , dy,τ }. (11)

We can easily obtain the following inverse relations of (9) and (10)

c
†
x,σ =



qp(σ)/4

d∑
j=1

ã
†
x−e(j),σ + 1

λ
ã

†
x,σ +q−p(σ)/4

d∑
j=1

ã
†
x+e(j),σ if x ∈�o,

λã
†
x,σ if x ∈�′,

(12)

and

cx,σ =


λdx,σ if x ∈�o,
−q−p(σ)/4dx−e(j),σ + 1

λ
dx,σ −qp(σ)/4dx+e(j),σ if x ∈�j .

(13)



Gapless Excitation above a Domain Wall Ground State 397

The existence of inverse relations implies that the Fock space is also
spanned by another basis

{(∏
x∈A

ã
†
x,↑

)(∏
x∈B

ã
†
x,↓

)
�vac

∣∣∣∣A,B⊂�
}
. (14)

This fact is useful to obtain the ground states.
The definition of our Hubbard Hamiltonian is given by

H :=Hhop +Hint, (15)

where Hhop and Hint defined

Hhop = t
∑
σ=↑,↓

∑
x∈�′

d
†
x,σ dx,σ (16)

and

Hint =U
∑
x∈�

nx,↑nx,↓ (17)

with t,U >0. The hopping Hamiltonian Hhop can be written in the follow-
ing form:

Hhop =
∑
x,y∈�

t(σ)x,y c
†
x,σ cy,σ , (18)

where

t (σ )x,y = (t(σ )y,x )
∗ =




td(|q|1/2 +|q|−1/2) if x=y ∈�o,
tλ2 if x=y ∈�′,
tλqp(σ)/4 if x ∈�′, y ∈�o, with

[x]< [y] and |x−y|= 1
2 ,

tλq−p(σ)/4 if x ∈�′, y ∈�o, with
[x]> [y] and |x−y|= 1

2 ,

te−ip(σ )θ/2 if x, y ∈�o with
[x]> [y] and |x−y|=1,

0 otherwise

(19)
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with a definition [x]=∑d
j=1 xj . We parametrize2 q=|q|eiθ by 0� θ <2π .

Each term t
(σ )
x,y c

†
x,σ cy,σ in the hopping Hamiltonian represents that an elec-

tron with spin σ hops from site x to site y with a probability proportional
to |t (σ )x,y |2.

Since the interaction Hamiltonian Hint represents an on-site repulsive
interaction, this Hamiltonian can be regarded as a simplification of the
Coulomb interaction between two electrons.

Note that this system conserves the number of electron. The total
electron number operator N̂e is defined by

N̂e :=
∑
x∈�

∑
σ=↑,↓

nx,σ . (20)

Since the Hamiltonian commutes with this operator, we can set the elec-
tron number to an arbitrary filling. In the present paper, we only consider
that the electron number is equal to |�o|, namely, only the Hilbert space
H is spanned by the following basis2

{(∏
x∈A

c
†
x,↑

)(∏
x∈B

c
†
x,↓

)
�vac

∣∣∣∣A,B⊂� with |A|+ |B|= |�o|
}
, (21)

or
{(∏

x∈A
ã

†
x,↑

)(∏
x∈B

ã
†
x,↓

)
�vac

∣∣∣∣A,B⊂� with |A|+ |B|= |�o|
}
. (22)

Let us discuss the symmetry of the model. First important symmetry
is a U(1) symmetry. We define spin operators at site x by

S(l)x :=
∑

σ,τ=↑,↓
c

†
x,σ

P(l)
σ,τ

2
cx,τ , (23)

where P(l) (l=1,2,3) denote Pauli matrices

P(1)=
(

0 1
1 0

)
, P(2)=

(
0 −i
i 0

)
, P(3)=

(
1 0
0 −1

)
. (24)

2Throughout the present paper, we denotes a complex conjugate of α∈C by α∗ and its abso-
lute value by |α|. We also denote |v| to represent a norm of a vector v in d-dimensional
Euclidean space and |A| to represent the cardinality of a set A.
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The Hamiltonian commutes with the third component of total spin oper-
ator

[H,S(3)tot ]=HS(3)tot −S(3)totH =0 (25)

with

S
(l)
tot =

∑
x∈�

S(l)x . (26)

We call the eigenvalue of S(3)tot magnetization. We can classify energy ei-
genstate by the magnetization. Note that this U(1) symmetry generated by
S
(3)
tot is enhanced to an SU(2) symmetry in the case of q= 1 i.e. Hamilto-

nian commutes with any component of total spin operator. In this case,
this model becomes the original flat-band Hubbard model given by Tasa-
ki (14,16). Another important symmetry is generated by a product of parity
and spin rotation defined by


=
−1 =P exp
(
iπS

(1)
tot

)
, (27)

where P is a parity operator defined by Pcx,σP = c−x,σ and Pc
†
x,σ P =

c
†
−x,σ . 
 transforms cx,σ and c†

x,σ to c−x,σ and c†
−x,σ , where σ =↓ if σ =↑

or σ =↑ if σ =↓. Note the following transformation of the total magneti-
zation 
S

(3)
tot
=−S(3)tot . An energy eigenstate with the total magnetization

M is transformed by 
 into another eigenstate with the total magneti-
zation −M, which belongs to the same energy eigenvalue. Note that the
Hamiltonian of the XXZ model with a boundary field h

−J
∑
x∈�o

d∑
j=1

[
S
(1)
x S

(1)
x+2e(j)

+S(2)x S
(2)
x+2e(j)

+ q+q−1

2
S(3)x S

(3)
x+2e(j)

+hS(3)x −hS(3)
x+2e(j)

]
, (28)

has these two symmetries as well. Our deformation of the hopping Ham-
iltonian in the flat-band Hubbard model is one of the simplest way which
preserves these two symmetries. If one does not want to add the XXZ
Hamiltonian which leads to the ferromagnetism trivially, one reaches to
our model naturally.
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3. GROUND STATES

In this section, we obtain ground states of the model with the fixed
electron number Ne =|�o| on the basis of Tasaki’s construction method.(14)

3.1. Construction of Ground States

The representation of the hopping Hamiltonian in terms of dx,σ ,

Hhop = t
∑
σ=↑,↓

∑
x∈�′

d
†
x,σ dx,σ (29)

indicates the positive semi-definiteness Hhop �0. The positive semi-definite-
ness of the interaction Hamiltonian Hint � 0 is also clear because nx,σ =
c

†
x,σ cx,σ �0, then the total Hamiltonian is also positive semi-definite

H =Hhop +Hint �0. (30)

First, we consider a fully polarized state �↑ defined by

�↑ =

∏
x∈�o

ã
†
x,↑


�vac. (31)

We easily verify H�↑ = 0 from the anticommutativity (11), and therefore
�↑ is a ground state of H . Next, we determine all other ground states.

The conditions that a state � is a ground state are obviously Hhop�=
0 and Hint�=0. In other words,

ãx,σ�=0 for all x ∈�′ with σ =↑,↓ (32)

and

cy,↑cy,↓�=0 for all y ∈�. (33)

We expand � into the following series:

�=
∑
A,B

ψ(A,B)

(∏
x∈A

ã
†
x,↑

)
∏
y∈B

ã
†
y,↓


�vac, (34)

where the summation is taken over all A,B ⊂� with |A| + |B| = |�o|.
The first condition (32) implies that ψ(A,B) does not vanish only for
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A,B⊂�o. The second condition (33) for y ∈�o means ψ(A,B) takes 0
for A∩B �=∅ with A,B⊂�o. Then we obtain the following form:

�=
∑
σ

φ(σ )


∏
x∈�o

ã
†
x,σx


�vac, (35)

where the summation is taken over all possible spin configurations σ =
(σx)x∈�o . To satisfy the second condition (33) for y ∈�j (j = 1,2, . . . , d),
the coefficient holds

φ(σ)=q [p(σ
y−e(j) )−p(σy+e(j) )]/2φ(σy−e(j),y+e(j) ), (36)

where σx,y is spin configuration obtained by the exchange σx and σy in
the original configuration σ . This relation implies the uniqueness of the
ground state with a fixed total magnetization, since two arbitrary spin
configurations with same total magnetization can be related by succes-
sive exchanges of two nearest neighbour spins. Therefore the degeneracy
of these ground states is exactly the same as that in the SU(2) symmetric
model. This degeneracy is also the same as the ground states in the XXZ
model.(3)

Note that we can find the “shift operator” S−
q which makes the

ground state with magnetization M from fully polarized ground state �↑
by acting certain times

�M = (S−
q )

Ld−2M�↑, (37)

where �M is the ground state with magnetization M. And S−
q can be writ-

ten as

S−
q =

∑
x∈�

q [x]ã
†
x,↓dx,↑. (38)

3.2. Another Representation of Ground States

To explore the nature of the ground state, we write the ground state
in a more explicit way as obtained by Gottstein and Werner in ref. 4. We
define the following electron operator creating a superposed state

α
†
x(ζ )=

∑
σ=↑,↓

ηx,σ ã
†
x,σ , (39)
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where we define a function of x ∈� and spin σ

ηx,σ = ζ−p(σ)/2q−p(σ)[x]/2

with [x] =∑d
j=1 xj . We define a ground state �(ζ) for an arbitrary com-

plex number ζ by

�(ζ)=
Ld∑
n=0

ζ n(S−
q )

n�↑ =

∏
x∈�0

α
†
x(ζ )


�vac. (40)

One can see the localization property of the electrons in this representa-
tion �(ζ). The spin state of an electron at each site is completely deter-
mined. Unlike the ground state with a fixed total magnetization, one
knows the conditional probability of the electron spin at site x. In prin-
ciple, one can check whether this ground state is realized or not by local
observations. From this fact, the state �(ζ) is expected to be healthy even
in the infinite-volume limit. We expect that the corresponding ground state
to �(ζ) is also a pure state in the infinite-volume limit, as in the XXZ
model. Note that the expectation value of an arbitrary local operator in
the corresponding ground state �(ζ) in the XXZ model is asymptotically
equal to that in �M for |ζ |, |M|=O(1).(8) We expect that the ground state
�(ζ) in our Hubbard model has many properties which are the same as
the domain wall ground state in XXZ model. In our Hubbard model,
however, these are difficult to be shown, since the state �(ζ) defined here
in the Hubbard model is not a product state unlike the ground state in the
XXZ model.

3.3. Spin One-Point Functions

Let us now consider expectation values of the spin operators in the
ground state �(ζ). We denote an expectation value of an operator A in
the ground state �(ζ) by 〈A〉ζ . The expectation value of a localized spin
at site x is written

〈S(j)x 〉ζ = 1
2

∑
σ,τ=↑,↓

P(j)
σ,τ

(�(ζ ),c
†
x,σ cx,τ�(ζ ))

‖�(ζ)‖2

= 1
2

∑
σ,τ=↑,↓

P(j)
σ,τ

(cx,σ�(ζ ),cx,τ�(ζ ))

‖�(ζ)‖2 . (41)

The following anticommutation relations

{cx,σ , α†
y(ζ )}=ληx,σ δx,y (42)
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for x, y ∈�o, and

{cx,σ , α†
y(ζ )}=−ηx,σ

(
q−1/4δx−e(j),y +q1/4δx+e(j),y

)
(43)

for x ∈�j and y ∈�o are useful to calculate the expectation value. These
anticommutation relations (42) and (43) yield an equation

cx,σ�(ζ )=ηx,σ�x(ζ ). (44)

Here, the state �x(ζ ) is defined by

�x(ζ )=




sgn(x)λ


∏
y �=x

α
†
y(ζ )


�vac if x ∈�o,

(
sgn(x− e(j))q−1/4

∏
y �=x−e(j)

α
†
y(ζ )

+sgn(x+ e(j))q1/4
∏

y �=x+e(j)
α

†
y(ζ )

)
�vac if x ∈�j,

(45)

where sgn(x) takes ±1. Then, the expectation value of c†
x,σ cx,τ for all x ∈

� in the ground state �(ζ) can be written in terms of �x(ζ ),

〈c†
x,σ cx,τ 〉ζ =η∗

x,σ ηx,τ
‖�x(ζ )‖2

‖�(ζ)‖2
. (46)

Thus we obtain the representations of spin one-point functions at site x ∈
� in terms of an electron number density 〈nx〉ζ (nx :=nx,↑ +nx,↓),

〈S(1)x 〉ζ = 〈nx〉ζ
2

ζq [x] + (ζq [x])∗

1+|ζqx |2 , (47)

〈S(2)x 〉ζ = 〈nx〉ζ
2i

ζq [x] − (ζq [x])∗

1+|ζqx |2 , (48)

〈S(3)x 〉ζ = 〈nx〉ζ
2

1−|ζq [x]|2
1+|ζq [x]|2 . (49)

We expect that the electron number density in the ground state �(ζ) is
almost constant on �o or on �′ respectively, from the definition of �(ζ).
Indeed, in the one-dimensional model, we can check this conjecture by the
exact bounds.(12)
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As in the domain wall ground state of the XXZ model discussed in
refs. 5, 7, 20, the two domains are distinguished by the sign of the local
order parameter 〈S(3)x 〉ζ . The domain wall center is defined by zeros of
〈S(3)x 〉ζ which is located at x with [x] =− log|q| |ζ |. The function 1

2 〈nx〉ζ −
|〈S(3)x 〉ζ | decays exponentially as x is far away from the center. This decay
length defines the domain wall width 1/ log |q|. If the number density is
almost constant on each sublattice �o or �′ as we conjectured, the behav-
iors of the spin one-point functions are not controlled by the number
density. In large λ limit for real q > 1, electrons are completely localized
at integer sites, and the spin one-point functions are exactly the same as
those obtained in the XXZ model defined on �o.

For a complex q = |q|eiθ , one can see the spiral structure with
a pitch angle θ . The vector 〈�Sx〉ζ := (〈S(j)x 〉ζ )3j=1 is rotated with the
angle [x]θ around the third spin axis depending on the site x. Note
that this spiral structure of the ground state does not exist in the
XXZ model, though the complex anisotropy parameter q = eiθ is pos-
sible in the XXZ Hamiltonian. The corresponding model is described
in the Tomonaga-Luttinger liquid without ferromagnetic order in one
dimension.

The translational symmetry in the infinite-volume limit is broken by
the domain wall or the spiral structure for finite log |ζ |. Both symmetries
generated by S(3) and 
 are broken spontaneously as well.

3.4. Spin Correlation Functions

The spin correlation function can be also represented in terms of the
correlation function of the local electron number operators

〈S(j)x S(l)y 〉ζ =1
4

∑
σ,τ,σ ′,τ ′

η∗
x,σP(j)

σ,τ ηx,τ

|ζq [x]|+ |ζq [x]|−1

η∗
y,σ ′P(l)

σ ′,τ ′ηy,τ ′

|ζq [x]|+ |ζq [x]|−1
〈nxny〉ζ . (50)

We can rewrite

〈S(j)x S(l)y 〉ζ =〈S(j)x 〉ζ 〈S(l)y 〉ζ 〈nxny〉ζ
〈nx〉ζ 〈ny〉ζ . (51)

if λ <∞. If one estimates the correlation function of the local electron
number operators, one can check the cluster property of the ground state.
Actually this can be done for the one-dimensional model.(12)
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4. EXISTENCE OF GAPLESS EXCITATIONS

Here, we show an upper bound of excitation energy in d�2 for suffi-
ciently large finite volume under the open boundary condition. We gener-
alize some parts of Matsui’s argument for the product ground state in the
XXZ model in ref. 7 to those for the non-product ground state in the flat-
band Hubbard model. We estimate the energy in a trial state constructed
by acting a local operator on a domain wall ground state �(ζ).

4.1. Low Energy Excitations

Here, we show two results for low energy excitations in our model.

Theorem 4.1. (“Local gapless excitation” above the ground state
�(ζ)). In the d-dimensional Hubbard model defined by the Hamilto-
nian (15) with d � 2 and the system volume |�o| =Ld , for an arbitrary
ζ ∈ C with | log|q| |ζ || < d(L − 1)/2 and an arbitrary l with 1 < l � L +
2| log|q| |ζ ||/d, there exists a local operator Ol defined on a compact sup-
port with a linear size l and a constant F1>0 independent of the system
size such that

(Ol�(ζ ),HOl�(ζ ))

‖Ol�(ζ )‖2
<F1Ul

−1 (52)

and (�(ζ ),Ol�(ζ ))= 0. Moreover, there is an upper bound on the norm
of a projected state P0Ol�(ζ ), where P0 is the projection operator onto
the space of ground states. There exist constants L1>0, R>1 and F2>0
which are independent of the system size such that

‖P0Ol�(ζ )‖2

‖Ol�(ζ )‖2
<F2l

d+1(Ld +1)R−2Ld−1
for L>L1. (53)

Here, we describe some physical meanings of Theorem 4.1. We
emphasize that the excited state in Theorem 4.1 is constructed by act-
ing a local operator which consists of finite number of electron opera-
tors c†

x,σ and cx,σ . As discussed when we defined the ground state �(ζ),
one can confirm whether the system takes the ground state �(ζ) or not
by local observation. After one checks the ground state �(ζ) once, one
can obtain a locally deformed state, say Ol�(ζ ), by a local operation
to the system. In this sense, Theorem 4.1 claims that one can change
the state of the system from the ground state �(ζ) by the local opera-
tion with energy as small as one wants. Particularly, the second result in
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Theorem 4.1 guarantees that the deformed state Ol�(ζ ) has a non-zero
orthogonal component to all ground states of the model. This fact implies
that the local operation represented in Ol is really effective to deform the
ground state �(ζ) of the system. Therefore, we can claim that there exists
a gapless excitation above the domain wall ground state �(ζ).

Remark. Theorem 4.1 should imply the existence of a gapless exci-
tation in the infinite-volume limit under the condition of the fixed electron
number, if the corresponding ground state in the infinite system to �(ζ)

were shown to be pure and unique as in the XXZ model.(7)

We can prove the following property of the lowest excitation energy
eigenvalue of H directly from Theorem 4.1.

Corollary 4.2. (Spectra of a finite system with open boundary con-
dition). Suppose the d-dimensional Hubbard model defined by the Hamil-
tonian (15) with d�2. Let E1 be the lowest energy eigenvalue of excitation
in the model with the system volume |�o|=Ld under the open boundary
condition. There exist constants L2>0 and F3>0 which are independent
of the system size such that

E1 �F3UL
−1 for L�L2. (54)

4.2. Expansion in the Original Basis

Here we prepare for the proof of Theorem 4.1 and Corollary 4.2. To
evaluate the inner product between two states, we represent them in terms
of original electron operator c†

x,σ . This representation has good properties
which help us to estimate expectation values of observables.

4.2.1. Space of Configurations

To introduce a representation of states in terms of original electron
operators, we define the decoration of a site x ∈� by a set

x̄ :=
d⋃
j=1

{x, x+ e(j), x− e(j)}∩�.

Note �=∪x∈�o x̄, which is not a disjoint union. Also we define the deco-
ration X̄ of a subset X⊂�o by

X̄ :=
⋃
x∈X

x̄.
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To expand the ground state �(ζ) in terms of an orthogonal basis, we
define the function ξx,σ (ζ ) for x ∈� by

ξx,σ (ζ )=
{
ληx,σ =λζ−p(σ)/2q−p(σ)[x]/2 for x ∈�o,
−ηx,σ =−ζ−p(σ)/2q−p(σ)[x]/2 for x ∈�′.

(55)

Since the operator α†
x(ζ ) is written in terms of this function

α
†
x(ζ )=

∑
y∈x̄

∑
σ=↑,↓

ξy,σ (ζ )c
†
y,σ ,

the ground state is represented in

�(ζ)=

∏
x∈�o

∑
y∈x̄

∑
σ=↑,↓

ξy,σ (ζ )c
†
y,σ


�vac, (56)

To represent the ground state in terms of the electron creation operators
on sites, we define a set CR of all configurations for the ground state. We
define a position configuration for the ground state by a one-to-one map-
ping f :�o→� with a constraint f (x)∈ x̄ for each x ∈�o. This mapping
f selects a site in each decoration x̄. We denote a set of all position con-
figurations for the ground state by PR. Also we define a spin configura-
tion for the ground state by a mapping g:�o→{↑,↓}. We denote a set of
all spin configurations for the ground state by S. A position configuration
f ∈PR and a spin configuration g∈S define a configuration in CR which
is a mapping ϕ:�o→�×{↑,↓} such that ϕ:x �−→ϕ(x)= (f (x), g(x)) for
x∈�o. An arbitrary configuration is also a one-to-one mapping. Then the
ground state (56) is represented as a summation over all configurations in
orthogonal basis

�(ζ)=
∑
ϕ∈CR


∏
x∈�o

ξϕ(x)(ζ )c
†
ϕ(x)


�vac. (57)

Several terms in this summation over all configurations are linearly depen-
dent, and they cancel each other. Therefore the summation over all config-
urations in CR is reducible.
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4.2.2. Simple Loop

To obtain an irreducible configuration space, we consider two differ-
ent configurations ϕ and ϕ′ in CR. Assume that two terms defined by ϕ

and ϕ′ are linearly dependent, namely, there exists a number C,


∏
x∈�o

ξϕ(x)(ζ )c
†
ϕ(x)


�vac =C


∏
x∈�o

ξϕ′(x)(ζ )c
†
ϕ′(x)


�vac. (58)

We say that two configurations ϕ,ϕ′ ∈ CR are linearly dependent if the
terms defined by ϕ and ϕ′ are linearly dependent. This relation implies

{ϕ(x)|x ∈�o}={ϕ′(x)|x ∈�o}, (59)

otherwise one cannot obtain the relation (58) for any number C. Nonethe-
less, ϕ �=ϕ′ implies ϕ(x) �=ϕ′(x) for some x ∈�o. Let us consider a set of
sites for two linearly dependent ϕ,ϕ′ ∈CR

X(ϕ,ϕ′)={x ∈�o|ϕ(x) �=ϕ′(x)}. (60)

To study properties of this set, we define several terms. We say that a
sequence

{xm+1, xm+2, . . . , xm+n}⊂�o

for arbitrary positive even integers m and n is a simple loop with a length
n, if x̄k ∩ x̄k+1 �=∅ for k=m+1, . . . ,m+n−1 and x̄m+n∩ x̄m+1 �=∅. We say
that a configuration ϕ= (f, g)∈CR for the ground state has a simple loop
{xm+1, xm+2, xm+3, . . . , xm+n}, if f (xk)∈ x̄k+1 for k=m+ 1,m+ 2, . . . ,m+
n−1 and f (xm+n)∈ x̄m+1.

4.2.3. Loop Decomposition of Linearly Dependent Configurations

Here, we show the following lemma.

Lemma 4.3. Let n be a number of elements of the set X(ϕ,ϕ′)
given in (60) for two linearly dependent configurations ϕ,ϕ′ ∈ CR. There
exist a positive integer N and some positive even integers 0 =m0 <m1 <
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· · ·<mN = n for X(ϕ,ϕ′), such that X(ϕ,ϕ′) can be written in a disjoint
union of some simple loops

X(ϕ,ϕ′)=
N⋃
j=1

{xmj−1+1, xmj−1+2, xmj−1+3, . . . , xmj }

and ϕ(xk−1) = ϕ′(xk) for mj−1 + 1 < k � mj and ϕ(xmj ) = ϕ′(xmj−1+1).

Therefore, both configurations ϕ and ϕ′ have each simple loop.

Proof. We attach indices to all sites in X(ϕ,ϕ′) in the following
inductive manner. Let x1 be an arbitrary site in X(ϕ,ϕ′). From the rela-
tion (59), there exists a site x2 ∈X(ϕ,ϕ′) for the site x1 such that ϕ(x1)=
ϕ′(x2). Note x1 �= x2 and x̄1 ∩ x̄2 �= ∅. By the relation ϕ(x2) �= ϕ′(x2) there
exists x3 ∈X(ϕ,ϕ′) for x2 such that ϕ(x2)= ϕ′(x3) and x3 �= x1, x2. There
exists x4 ∈ X(ϕ,ϕ′) for x3 such that ϕ(x3) = ϕ′(x4) and x4 �= x1, x2, x3.

If ϕ(x4) = ϕ′(x1), then we obtain a simple loop {x1, x2, x3, x4} with a
length m1 = 4 and both configurations ϕ and ϕ′ have this simple loop.
This is because x̄4 ∩ x̄1 �= ∅. If ϕ(x4) �= ϕ′(x1), we define x5 ∈ X(ϕ,ϕ′)
such that ϕ(x4)=ϕ′(x5) and x5 �=x1, x2, x3, x4. We assume already defined
xk−1 ∈X(ϕ,ϕ′) for an arbitrary natural number k � n with xk−1 �= xi for
any i = 1,2, . . . , k − 2, such that ϕ(xj ) = ϕ′(xj+1) for j = 1, . . . , k − 2.
If ϕ(xk−1) = ϕ′(x1), then we obtain a simple loop {x1, x2, x3, . . . , xk−1}
with a length m1 = k − 1 and both configurations ϕ and ϕ′ have this
loop. If ϕ(xk−1) �= ϕ′(x1), we define xk ∈ X(ϕ,ϕ′) such that ϕ(xk−1) =
ϕ′(xk) and xk �= xi for any i = 1, . . . , k − 1. This can be proved as fol-
lows. If xk=xi for some i=2,3, . . . , k−1, then ϕ(xk−1)=ϕ′(xk)=ϕ′(xi)=
ϕ(xi−1). This equality and the definition of a one-to-one mapping imply
xk−1 = xi−1, which contradicts the assumption of the inductivity. Also
the assumption ϕ(xk−1) �= ϕ′(x1) excludes xk = x1. Thus, xk cannot be
any element in {x1, x2, x3, . . . , xk−1}. Note x̄k−1 ∩ x̄k �= ∅. There exists a
number m1 � n such that ϕ(xm1) = ϕ′(x1) and x̄m1 ∩ x̄1 �= ∅. We obtain
a simple loop {x1, x2, x3, . . . , xm1} with a length m1, and both configura-
tions ϕ and ϕ′ have this simple loop. If X(ϕ,ϕ′) \ {x1, x2, x3, . . . , xm1}=∅,
then X(ϕ,ϕ′)= {x1, x2, x3, . . . , xm1} is a simple loop itself with a length
n = m1. If X(ϕ,ϕ′) \ {x1, x2, x3, . . . , xm1} �= ∅, then n − m1 > 0 and we
continue to attach indices m1 + 1, . . . , n to the elements in X(ϕ,ϕ′) \
{x1, x2, x3, . . . , xm1}. By attaching the indices m1 + 1, . . . , n, we can con-
tinue to identify a subset of X(ϕ,ϕ′)\{x1, x2, x3, . . . , xm1} to a simple loop
that both configurations have. Finally, we can write the set X(ϕ,ϕ′) as a
disjoint union of some simple loops by attaching the indices 1,2,3, . . . , n
to all the elements in X(ϕ,ϕ′). Both configurations ϕ and ϕ′ have each
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simple loop {xmj−1+1, xmj−1+2, xmj−1+3, . . . , xmj } with a length mj −mj−1,
and for two sites in each loop we have ϕ(xk−1)=ϕ′(xk) for mj−1 +1<k�
mj and ϕ(xmj )=ϕ′(xmj−1+1). Thus, we have proved the lemma.

4.2.4. Irreducible Configuration Space

We define the irreducible set of all configurations for the ground state
by

C :={ϕ ∈CR | ϕ has no simple loop}.

Here, we obtain the following lemma by proving that the terms given by
two configurations with a common simple loop are cancelled.

Lemma 4.4. The ground state is represented in the summation over
irreducible set of all configurations

�(ζ)=
∑
ϕ∈C


∏
x∈�o

ξϕ(x)(ζ )c
†
ϕ(x)


�vac. (61)

Proof. From Lemma 4.3, we consider a configuration ϕ ∈CR which
has a simple loop {x1, . . . , xn} with the length n= 2m. We show that this
configuration ϕ has a counter contribution which cancels the contribution
from ϕ. For the configuration ϕ, there exists a unique configuration ϕ′
with the same simple loop such that X(ϕ,ϕ′)= {x1, . . . , xn}. In this case,
ϕ(xk)=ϕ′(xk+1) for any natural number k�n−1 and ϕ(xn)=ϕ′(x1). Then,
the fermion statistics of the electron operators gives the following relation:

2m∏
k=1

c
†
ϕ(xk)

=
2m∏
k=1

c
†
ϕ′(xk+1)

=−
2m∏
k=1

c
†
ϕ′(xk),

where we define x2m+1 = x1. This relation implies C = −1 in the relation
(58), therefore the contributions of ϕ and ϕ′ in (57) cancel each other.
Now, we rewrite the representation (57) of the ground state into summa-
tion over independent terms. As discussed above, all configurations which
give linearly dependent terms in the representation (57) have at least one
simple loop and all terms are cancelled. Therefore, the representation (57)
of ground state can be rewritten into a summation over all configurations
with no simple loop, which consists of only linearly independent terms.
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The set C of all configurations can be decomposed into a set P of all
position configurations and a set S of all spin configurations, where the
set of all position configurations is defined by

P :={f ∈PR | f has no simple loop},

as well as C. On the other hand, all spin configurations have no constraint.
Therefore, after summing over all the spin configurations, the ground state
is represented in the summation over irreducible set of all position config-
urations

�(ζ)=
∑
f∈P


∏
x∈�o

(ξf (x),↑(ζ )c
†
f (x),↑ + ξf (x),↓(ζ )c†

f (x),↓)


�vac. (62)

4.3. Proof of Theorem 4.1

We define the following hyper cube on the lattice with a positive num-
ber l

Yl :=
({
(x1, x2, . . . , xd)∈R

d
∣∣∣∣∣[x]

∣∣� l−1
2
, |xj |< l−1

2

for all j =1,2, . . . , d
}

+ z

d
(1,1, . . . ,1)

)
∩�o, (63)

where we define z∈R by |ζ |=q−z. Note that the sublattice Yl has a linear
size l. We define a local operator

S̃
(3)
Yl

= 1
2

∑
x∈Yl

∑
σ,τ=↑,↓

ã
†
x,σP(3)

σ,τ dx,τ , (64)

and its deviation from the ground state expectation value

δS̃
(3)
Yl

= S̃(3)Yl − (�(ζ ), S̃
(3)
Yl
�(ζ ))

‖�(ζ)‖2
. (65)

We define a normalized state �̃(ζ ) by

�̃l(ζ ) := δS̃
(3)
Yl
�(ζ )

‖δS̃(3)Yl �(ζ )‖
, (66)

which is obviously orthogonal to the ground state �(ζ).



412 Homma and Itoi

First, we evaluate the norm of δS̃(3)Yl �(ζ ).

‖δS̃(3)Yl �(ζ )‖2 =‖(S̃(3)Yl −〈S̃(3)Yl 〉ζ )�(ζ )‖2. (67)

Lemma 4.4 allows us to represent the state in a summation over the
configurations. If we define an indicator function χ by χ [true] = 1 and
χ [false]=0, the state can be represented in

S̃
(3)
Yl
�(ζ ) =

∑
y∈Yl

∑
f∈P

χ [f (y)=y] sgn(y)
∑
w∈y

(ξw,↑(ζ )c
†
w,↑ − ξw,↓(ζ )c†

w,↓)

×

 ∏
x∈�o\{y}

(ξf (x),↑(ζ )c
†
f (x),↑ + ξf (x),↓(ζ )c†

f (x),↓)


�vac,

(68)

where sgn(y)=±1 is a sign factor coming from the fermion statistics. Note
that for an arbitrary f ∈ P with f (y) �= y, there exists g ∈ P such that
g(y)=y and f |�o\{y} =g|�o\{y}. Thus we can represent S̃(3)Yl �(ζ ) by

S̃
(3)
Yl
�(ζ )=

∑
y∈Yl

∑
f∈P

[ ∏
x∈�o

(ξf (x),↑(ζ )c
†
f (x),↑

+(−1)χ [x=y]ξf (x),↓(ζ )c
†
f (x),↓)

]
�vac +�⊥. (69)

The residual state �⊥ is orthogonal to the first term in the right hand side
as well as any ground state �(ζ), since �⊥ has no term written in a basis
of irreducible configurations C. The ground state expectation value is rep-
resented as

〈S̃(3)Yl 〉ζ = 1
2‖�(ζ)‖2

∑
f∈P

∑
x1∈Yl

|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2

×
∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2), (70)

where P denotes the irreducible set of all the position configurations of
the ground state. Another important part in the norm of δS̃(3)Yl �(ζ ) is
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‖S̃(3)Yl �(ζ )‖2

=
∑
f∈P

1
4




∑
x1=x2∈Yl

1+
∑

x1 �=x2∈Yl

|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2

|ξf (x2),↑|2 −|ξf (x2),↓|2
|ξf (x2),↑|2 +|ξf (x2),↓|2




×
∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2)+‖�⊥‖2

�
∑
f∈P

1
4



∑
x1∈Yl


1−

(
|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2

)2



+

∑
x1∈Yl

|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2




2


∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2).

Thus, the norm of δS̃(3)Yl �(ζ ) has the following lower bound

‖δS̃(3)Yl �(ζ )‖2 �
∑
f∈P



∑
x1∈Yl

1
4


1−

(
|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2

)2



+1
4


∑
x1∈Yl

|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2 −2〈S(3)Yl 〉ζ




2



×
∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2)

�
∑
f∈P

∑
x1∈Yl

1
4


1−

(
|ξf (x1),↑|2 −|ξf (x1),↓|2
|ξf (x1),↑|2 +|ξf (x1),↓|2

)2

∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2)

�
∑
x1∈Yl

1
4


1−

(
|q||[x1]−z|+1/2 −|q|−|[x1]−z|−1/2

|q||[x1]−z|+1/2 +|q|−|[x1]−z|−1/2

)2



×
∑
f∈P

∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2). (71)

If we define G1 = (|q| 1
2 +|q|− 1

2 )−2, we obtain

‖δS̃(3)Yl �(ζ )‖2 �G1l
d−1‖�(ζ)‖2. (72)
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Next, we estimate (δS̃
(3)
Yl
�(ζ ),HδS̃

(3)
Yl
�(ζ )). The hopping energy of

δS̃
(3)
Yl
�(ζ ) vanishes

(δS̃
(3)
Yl
�(ζ ),HhopδS̃

(3)
Yl
�(ζ ))=0, (73)

since δS̃(3)Yl �(ζ ) consists of only operators a†
x,σ with x∈�o acting on �vac.

The interaction term

(δS̃
(3)
Yl
�(ζ ),HintδS̃

(3)
Yl
�(ζ )) = (S̃

(3)
Yl
�(ζ ),HintS̃

(3)
Yl
�(ζ ))

= U
∑
y∈∂Yl

‖cy,↑cy,↓S̃(3)Yl �(ζ )‖2, (74)

where we define ∂Yl = Ȳl ∩ Ȳ cl ⊂�′. Note that for any y ∈ ∂Yl , there exist
x1 ∈�o\Yl and x2 ∈Yl such that x̄1 ∩ x̄2 =y. Thus, we find a bound

‖cy,↑cy,↓S̃(3)Yl �(ζ )‖2

=
∑
f∈P

χ [f (x1)=y] χ [f (x2)=x2]
(|ξf (x1),↑|2 +|ξf (x1),↓|2)(|ξf (x2),↑|2 +|ξf (x2),↓|2)

×
∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2)

�
∑
f∈P

1
(|ξf (x1),↑|2 +|ξf (x1),↓|2)(|ξf (x2),↑|2 +|ξf (x2),↓|2)

×
∏
x∈�o

(|ξf (x),↑|2 +|ξf (x),↓|2)

� ‖�(ζ)‖2

(|q|[y]−1−z+|q|−[y]+1+z)2
, (75)

where we have used the indicator function again. For sufficiently large l,
there exists G2>0 such that

∑
y∈∂Yl

1
(|q|[y]−1−z+|q|−[y]+1+z)2

�G2l
d−2.

Therefore, we have the following inequality:

(δS̃
(3)
Yl
�(ζ ),HδS̃

(3)
Yl
�(ζ ))�G2Ul

d−2‖�(ζ)‖2. (76)
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From (72) and (76), we obtain

(�̃l(ζ ),H�̃l(ζ ))<
G2

G1
Ul−1. (77)

If we define F1 =G2/G1, we find (52).
Here, we evaluate norm of P0�̃l(ζ ). First we consider inner product

between two different ground states

|(�(ζ ′),�(ζ ))|
‖�(ζ ′)‖‖�(ζ)‖ . (78)

From Lemma 4.4, we can represent the inner product in the following

(�(ζ ′),�(ζ ))
‖�(ζ ′)‖‖�(ζ)‖ =

∑
ϕ∈C

∏
x∈�o ξϕ(x)(ζ

′)∗ξϕ(x)(ζ )√∑
ϕ1,ϕ2∈C

∏
x∈�o |ξϕ1(x)(ζ

′)|2|ξϕ2(x)(ζ )|2
. (79)

The Schwarz inequality ensures the convergence of the inner product of
the normalized ground state

|(�(ζ ′),�(ζ ))|
‖�(ζ ′)‖‖�(ζ)‖ �1.

We estimate this inner product with considering the constraints on the
configurations. We evaluate the product of the norms

‖�(ζ ′)‖2‖�(ζ)‖2

=
∑

f1,f2∈P

∏
x∈�o

(|ξ ′
f1(x),↑|2 +|ξ ′

f1(x),↓|2)(|ξf2(x),↑|2 +|ξf2(x),↓|2). (80)

Here, we abbreviate ζ and ζ ′ by

ξf (x),σ = ξf (x),σ (ζ ), ξ ′
f (x),σ = ξf (x),σ (ζ ′).

We evaluate each term in this summation. A term with arbitrary f1, f2 ∈P
has a lower bound
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∑
f1,f2∈P

1
2


∏
x∈�o

(|ξ ′
f1(x),↑|2 +|ξ ′

f1(x),↓|2)(|ξf2(x),↑|2 +|ξf2(x),↓|2)+(f1 ↔f2)




�
∑

f1,f2∈P

√∏
x∈�o

(|ξ ′
f1(x),↑|2 +|ξ ′

f1(x),↓|2)(|ξf2(x),↑|2 +|ξf2(x),↓|2)×(f1 ↔f2)

=
∑

f1,f2∈P

∏
x∈�o

R(f1(x),f2(x))
2|ξ ′

f1(x),↑
∗
ξf1(x),↑+ξ ′

f1(x),↓
∗
ξf1(x),↓||

×ξ ′
f2(x),↑ξf2(x),↑

∗+ξ ′
f2(x),↓ξf2(x),↓

∗|,

where a function R(y1, y2) is defined for arbitrary y1, y2 ∈� by

R(y1, y2)
2 =

√
(|ξ ′

y1,↑|2 +|ξ ′
y1,↓|2)(|ξy1,↑|2 +|ξy1,↓|2)× (y1 ↔y2)

|ξ ′
y1,↑

∗
ξy1,↑ + ξ ′

y1,↓
∗
ξy1,↓||ξ ′

y2,↑ξy2,↑∗ + ξ ′
y2,↓ξy2,↓∗| . (81)

In the practical calculation, we can check R(y1, y2) > 1 for arbitrary
y1, y2 ∈�. Also the Schwarz inequality for the linearly independent two
vectors (ξy,↑, ξy,↓) and (ξ ′

y,↑, ξ
′
y,↓) ensures this relation. We define a func-

tion

R(x)≡ min
f1,f2∈P

R(f1(x), f2(x)),

which is also larger than 1. Therefore, we have an upper bound of the
inner product between the normalized ground states

|(�(ζ ′),�(ζ ))|
‖�(ζ ′)‖‖�(ζ)‖ �

∏
x∈�o

R(x)−1. (82)

Each factor R(x)−1 with a fixed [x] is a constant less than 1, since the
both functions ξf (x),σ (ζ ) and ξf (x),σ (ζ

′) depend on x only through [x] =∑d
k=1 xj for any f ∈P . We define R=maxx∈�o R(x), then we find

|(�(ζ ′),�(ζ ))|�R−Ld−1‖�(ζ ′)‖‖�(ζ)‖. (83)

Next, we evaluate an inner product between δS̃
(3)
Yl
�(ζ ) and another

ground state. First, we evaluate
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(�(ζ ′), S̃(3)Yl �(ζ )) = 1
2

∑
f∈P

∑
x1∈Yl

ξ ′
f (x1),↑

∗
ξf (x1),↑ − ξ ′

f (x1),↓
∗
ξf (x1),↓

ξ ′
f (x1),↑

∗
ξf (x1),↑ + ξ ′

f (x1),↓
∗
ξf (x1),↓

×
∏
x∈�o

(ξ ′
f (x),↑

∗
ξf (x),↑ + ξ ′

f (x),↓
∗
ξf (x),↓). (84)

Then, we have

|(�(ζ ′), S̃(3)Yl �(ζ ))| � 1
2

∑
x1∈Yl

1

∣∣∣∣∣∣
∑
f∈P

∏
x∈�o

(ξ ′
f (x),↑

∗
ξf (x),↑ + ξ ′

f (x),↓
∗
ξf (x),↓)

∣∣∣∣∣∣
= 1

2
G3l

d |(�(ζ ′),�(ζ ))|, (85)

where we define G3 by
∑
x1∈Yl 1 =G3l

d . Also we obtain another upper
bound

(�(ζ ), S̃
(3)
Yl
�(ζ ))� 1

2
G3l

d‖�(ζ)‖2. (86)

Therefore, the inner product between δS̃
(3)
Yl
�(ζ ) and the ground state is

estimated as

|(�(ζ ′), δS̃(3)Yl �(ζ ))|�G3l
dR−Ld−1‖�(ζ ′)‖‖�(ζ))‖. (87)

Now we estimate ‖P0�̃l(ζ )‖. Since {�(ζj )}Ldj=0 is a complete basis of
the ground states, we can represent P0�̃l(ζ ) by

P0�̃l(ζ )=
Ld∑
j=0

Cj

‖�(ζj )‖�(ζj ), (88)

where Cj is a complex coefficient. Thus, we have

‖P0�̃l(ζ )‖2 =
Ld∑
j=0

Cj

‖�(ζj )‖ (�̃l(ζ ),�(ζj ))=
Ld∑
j=0

Cj
(δS̃

(3)
Yl
�(ζ ),�(ζj ))

‖δS̃(3)Yl �(ζ )‖‖�(ζj )‖

<
G3√
G1
l(d+1)/2R−Ld−1

Ld∑
j=0

|Cj |, (89)

where we have used (83) and (87). To evaluate
∑
j |Cj |, we consider
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(�(ζj ),P0�̃l(ζ ))

‖�(ζj )‖ =
Ld∑
k=0

Ck
(�(ζj ),�(ζk))

‖�(ζj )‖‖�(ζk)‖

= Cj +
∑
k �=j

Ck
(�(ζj ),�(ζk))

‖�(ζj )‖‖�(ζk)‖ . (90)

Then, we have

|Cj | < |(�(ζj ),P0�̃l(ζ ))|
‖�(ζj )‖ +

∑
k �=j

|Ck| |(�(ζj ),�(ζk))|
‖�(ζj )‖‖�(ζk)‖

<
G3√
G1
l(d+1)/2R−Ld−1 +R−Ld−1 ∑

k �=j
|Ck|, (91)

where we have used (83) and (87). If we define |Cm|= max{|Ck|}Ldk=0, then
we obtain

|Ck|� |Cm|< G3√
G1

l(d+1)/2R−Ld−1

1−LdR−Ld−1 , (92)

for any k=0,1, . . . ,Ld . Thus, we obtain

‖P0�̃l(ζ )‖2<
G3

2

G1

(Ld +1)ld+1R−2Ld−1

1−LdR−Ld−1 . (93)

from (89) and (92). If we define L1 by 1 −L1
dR−L1

d−1 = 1/2 and F2 by
F2 =2G3

2/G1, then we obtain

‖P0�̃l(ζ )‖2<F2(L
d +1)ld+1R−2Ld−1

. (94)

By definition of the normalized state (66), this inequality completes the
proof of Theorem 4.1.

4.4. Proof of Corollary 4.2

Here, we prove Corollary 4.2. We define a normalized state �̃⊥ by

�̃⊥ := (1−P0)�̃L(1)

‖(1−P0)�̃L(1)‖
. (95)
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An upper bound of (�̃⊥,H�̃⊥) gives an upper bound on the lowest exci-
tation energy in a finite system, since �̃⊥(ζ ) is orthogonal to all of the
ground state. Since H�̃L(1)=H(1 −P0)�̃L(1), the only remaining task is
to estimate ‖(1−P0)�̃L(1)‖. From (93), we obtain

‖(1−P0)�̃L(1)‖2 = ‖�̃L(1)‖2 −‖P0�̃L(1)‖2

< 1− G3
2

G1

(Ld +1)Ld+1R−2Ld−1

1−LdR−Ld−1 . (96)

If we define L2 by

G3
2

G1

(L2
d +1)L2

d+1R−2L2
d−1

1−L2
dR−L2

d−1 = 1
2
, (97)

and set F3 =2F1, then we obtain an upper bound

(�̃⊥,H�̃⊥)<F3UL
−1. (98)

This gives an upper bound on the lowest excitation energy in a finite sys-
tem, and so completes the proof of Corollary 4.2.

5. EXISTENCE OF THE SPIN-WAVE GAP

In this section, we consider our model under the periodic boundary
condition. The properties of ground states and low energy excitations are
very different from a system with the open boundary. We find only two
ground states: the all-spin-up state and the all-spin-down state. We show
that a one-magnon spin-wave excitation has an energy gap as in the XXZ
model. The proof is based on Tasaki’s argument for the SU(2) invariant
model.(18) He proved that the one-magnon spin-wave excitation in the Ta-
saki model has the same dispersion relation as that in the ferromagnetic
Heisenberg model. These spin-wave excitations in both models have no
energy gap, since they are the Goldstone mode above the ground states
which spontaneously break the SU(2) spin rotation symmetry. On the con-
trary, an energy gap is generated by the anisotropy in our model as in the
XXZ model. Here, we show only a brief sketch of the proof.

5.1. Ground States and Spin-Wave Excitation

First we obtain ground states. We have already found the represen-
tation of a ground state (35) with the condition (36) in Section 3. The
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periodic boundary condition allows no configuration which satisfies the
condition (36) except in the two cases: σx =↑ for all x ∈�o or σx =↓ for
all x ∈�o. Thus, we conclude that all ground states in the periodic system
are only two fully polarized states �↑ and �↓.

Next we consider the one-magnon spin-wave excitation. For the spin-
wave in our electron model, we consider properties of the spin-wave state
in quantum spin models. The one-magnon spin-wave state with a wave-
number k∈K: �SW(k) satisfies

Tx�SW(k)= e−ik·x�SW(k) (99)

and

S
(3)
tot�SW = (Smax −1)�SW, (100)

where x ∈�o. The translation operator Tx is defined by

Txcy,σ T
−1
x = cx+y,σ and Txc

†
y,σ T

−1
x = c†

x+y,σ . (101)

K is the space of wave-number vectors

K :=
{

2πn
L

∣∣∣∣ n∈Z
d ∩
[
−L−1

2
,
L−1

2

]d}
. (102)

Then, the one-magnon spin-wave state is in the following Hilbert space Hk

Hk :=
{
� ∈H

∣∣∣ Tx�= e−ik·x� and S
(3)
tot�= 1

2 (|�o|−1)�
}
. (103)

We define the one-magnon spin-wave state with wave-number k by the
lowest energy state in Hk. Let ESW(k) be the energy of one-magnon spin-
wave state with wave-number k. We can prove the following theorem.

Theorem 5.1. (Spin-Wave Gap). Suppose the d-dimensional Hub-
bard model defined by the Hamiltonian (15). There exist positive constants
t0,U0, λ0,C <∞ which are independent of system volume such that

min
k∈K

ESW(k)�
2U
λ4

[
d(|q|+ |q|−1 −2)

2
− C

λ

]
, (104)

for t� t0,U �U0 and λ�λ0.

This theorem shows that one-magnon spin-wave excitation has a finite
gap for sufficiently large λ in a periodic system.
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5.2. Sketch of Proof

Theorem 5.1 is proved by the same approach given in ref. 18. Here,
we show only a sketch of the proof.

First we introduce a localized electron operator a†
x,σ defined by

a
†
x,σ :=

∑
y∈�

ψ(x)y,σ c
†
y,σ , (105)

where ψ(x)y,σ is defined by

ψ(x)y,σ :=



δx,y −

d∑
j=1

(
qp(σ)/4

λ
δx−e(j),y + q−p(σ)/4

λ
δx+e(j),y

)
if x ∈�o,

δx,y + (q−p(σ)/4)∗

λ
δx−e(j),y + (qp(σ)/4)∗

λ
δx+e(j),y if x ∈�j .

(106)

The set {a†
x,σ�vac}x∈� is a basis in the space of single electron states. We

define the dual operator bx,σ which satisfies

{bx,σ , a†
y,τ }= δx,yδσ,τ and {bx,σ , by,τ }=0={a†

x,σ , a
†
y,τ }. (107)

We represent bx,σ in terms of the original electron operator by

bx,σ =
∑
y∈�

(ψ̃(x)y,σ )
∗cy,σ . (108)

Eqs. (105), (107) and (108) mean
∑
w∈�

(ψ̃(x)w,σ )
∗ψ(y)w,σ = δx,y and

∑
w∈�

(ψ̃(w)x,σ )
∗ψ(w)y,σ = δx,y . (109)

The original electron operators can be written in terms of a†
x,σ and bx,σ ,

c
†
x,σ =

∑
y∈�

(ψ̃
(y)
x,σ )

∗a†
y,σ and cx,σ =

∑
y∈�

ψ
(y)
x,σ by,σ . (110)

The Hilbert space with |�o| electrons is also spanned by the basis
{(∏

x∈A
a

†
x,↑

)(∏
x∈B

a
†
x,↓

)
�vac

∣∣∣∣A,B⊂� with |A|+ |B|= |�o|
}

(111)

because c†
x,σ can be written in terms of a†

x,σ .
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We represent the interaction Hamiltonian in terms of this basis

Hint =
∑

x1,x2,x3,x4∈�

(
U
∑
w∈�

(ψ̃
(x1)
w,↑ ψ̃

(x2)
w,↓ )

∗ψ(x3)
w,↓ψ

(x4)
w,↑

)
a

†
x1,↑a

†
x2,↓bx3,↓bx4,↑.

(112)

It is convenient to introduce a new hopping Hamiltonian H̃hop defined by

H̃hop := tλ2
∑
σ=↑,↓

∑
x∈�′

a
†
x,σ bx,σ (113)

for the estimation of a lower bound of spin-wave excitation. H̃hop satisfies

H̃hopa
†
x,σ�vac =

{
0 if x ∈�o,
tλ2 if x ∈�′.

(114)

Since Hhopa
†
x,σ�vac =0 for x∈�o and tλ2 is lowest energy eigenvalue of a

single electron state which is orthogonal to the zero energy states, then we
have H̃hop �Hhop.

First, we define a basis of Hk. To define a convenient basis of Hk, we
define a state �µ,A(k) for µ= 0,1, . . . , d and for a set A⊂� with |A| =
|�o|−1 by

�µ,A(k) :=
∑
w∈�o

eik·wTwa
†
e(µ),↓

(∏
v∈A

a
†
v,↑

)
�vac, (115)

where e(µ) = o = (0,0, . . . ,0) for µ = 0 and e(µ) = e(j) for µ = j (j =
1,2, . . . , d). This state satisfies both properties (99) and (100). We define
another state �(k) by

�(k)= 1
α(k)

∑
w∈�o

eik·wTwa
†
o,↓bo,↑�↑ ∝�0,�o\{o}, (116)

which is an approximation of the spin-wave state. We will choose a con-
stant α(k) in the proof. We define the following basis of Hk by

Bk := {�(k)}∪{�µ,A ∣∣ µ=0,1, . . . , d, A⊂�
with |A|= |�o|−1 and (µ,A) �= (0,�o\{o})

}
. (117)
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We define H̃ by H̃hop +Hint and matrix elements h[�,�] between �,� ∈
Bk by the unique expansion

H̃�=
∑
�∈Bk

h[�,�]�. (118)

And we define D[�] by

D[�] :=�[h[�,�]]−
∑

�∈Bk\{�}
|h[�,�]|. (119)

Now, we can prove the following lemmas.

Lemma 5.2. Let E0(k) be the lowest energy eigenvalue of H̃ in the
Hilbert space Hk. Then, we have

E0(k)� min
�∈Bk

D[�]. (120)

Lemma 5.3. There exist positive constants t0,U0, λ0,C <∞ inde-
pendent of system volume such that

min
�∈Bk

D[�] = D[�(k)]

� 2U
λ4


d(|q|+ |q|−1)

2
−

d∑
j=1

cos
(

2k · e(j)+ θ
)

− C

λ


 (121)

for t� t0, λ�λ0 and U �U0.

We find the proof of Lemma 5.2 in subsection 6.1 of ref. 18. Lemma
5.3 is obtained by a direct evaluation.

Now, we can prove Theorem 5.1. Since H̃ �H , then we have E0(k)�
ESW(k). Thus we find

�E � min
k∈K

E0(k)

� min
k∈K

2U
λ4


d(|q|+ |q|−1)

2
−

d∑
j=1

cos
(

2k · e(j)+ θ
)

− C

λ


 (122)

from Lemmas 5.2 and 5.3. This concludes Theorem 5.1.
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6. SUMMARY

In this paper, we construct a set of exact ground state with a
ferromagnetic domain wall structure and a spiral structure in a deformed
flat-band Hubbard model under an open boundary condition. We have
studied excited states above the domain wall ground state. There exists
a gapless excitation above the domain wall ground state in dimensions
higher than one. This excited state is constructed by acting a local oper-
ator near the domain wall on the ground state. We study this model
also under the periodic boundary condition. In this case a ground state
becomes the all-spin-up or -down state. We have shown the energy gap of
the spin-wave excitation above the all-spin-up ground state. These proper-
ties of the excitations above the ground states are similar to those in the
XXZ model.
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